Chemistry in English

Изменено: 21.02.2016 Posted on

Sednev Yri  Chemistry (by Wiki)  is a branch of  physical science and bridges other natural sciences, including physics, geology and biology (see watson_discovered_dna?language=ru).[3][4]  The modern  physics and inorganic chemistry are based on electron theory and degrees of oxidation according to the Periodic system of elements. However, organic chemistry and biology are based on the structural theory of carbon bonds (Cn), without the system.  Mendeleyev’s Periodic system of elements and ‘characteristic compounds of groups’ are only the beginning and a small part of the Periodic system of compounds including Cn— system of all organic compounds and metabolism (2001). It determines a programme of development of new chemistry and electronic theory as well as linking natural sciences from physics to organic, biology and medicine (natural and created substances, ferments and genes, genome, proteome and cell organization),  economy and other

Inorganic chemistry: Reactions of s-p elements …; Stoichiometry, reactions and properties of binary non-metal hydrides : Table 1 The connection of Periodic system of elements and compounds

1-2:ns1-2 3:ns2p 4:ns2p2®sp3 5  …ns2p3 6    …ns2p4 7    …ns2p5 Electron forms
(s-  elements  p-) -4:CH4(SiH4… -3: NH3    PH3 -2:H2O,H2S.. -1: HX :Types  0 :R
Metal compounds -3:        C2H6 -2:NH2NH2 -1:H2O2,H2S2-  0:  X2 +1:R2O
-3:B2H6 -2:CH3OH,C2H4 -1:NH2OH,PH3O 0:O2,O3,HOF,S8 +1: X2O — HXO +2:RO
-2 -1:C2H2,C2H4O2  0:  N2       P4 +1:O2F2,S2X2,H2S2O2 +2 +3:R2O3
  -1 0:C,CH2X2,H2CO +1:N2O H3PO2 +2 SX2,H2SO2,H2S2O3 +3:X2O3-HXO2 +4:RO2
0 B,А1 +1:        C2X2 +2:NO +3:       [H2S2O4] +4:XO2 +5:R2O5
  +1 +2:CO,H2CO2 3:HNO2,H3PO3 +4:SO2,H2SO3 +5:X2O5-HXO3 +6:RO3
  +2 +3:C2X6,(CO2H)2 +4 NO2 +5:         H2S2O6 +6: +7:R2O7
1Li2O,BeO B2O3,H3BO3 +4:CO2,H2CO3 5:N2O5HNO3H3PO4 +6:SO3,H2SO4 +7:X2O7-HXO4 +8:RO4

Organic chemistry: Common electrophiles and nucleophiles…substitution: reaction of halogens and alkanes;  Oxidations and reductions: switching between the different oxidation levels of common functional groups (alkyne – alkene – alkane – alkyl halide, alcohol – aldehyde, ketone –  carboxylic acid derivatives, nitriles – carbonates)…Amino acids and their classification in groups, isoelectric point, peptide bond, peptides and proteins; Carbohydrates: open chain and cyclic form of glucose and fructose; Lipids: general formulae of triacyl glycerides, saturated and unsaturated fatty acids;

2.Other forms and applications of the periodic system of compounds

The diminution of cells (2n+1 or 4n+1 at discontinuity in Cn) and the unconformity with traditional rows of homologues (since the addition of CH2-groups changes the oxidation degree) can be overcome with the help of pyramidal systems with equal sizes of cells. Asymmetrical or ‘transitional’ pyramidal form with the traditional rows of homologues determined by the order of their total oxidation degree, dehydrogenation or number of oxygen atoms in moleculetransformed into Table 3 if the oxidation degree relates to one atom of carbon.The difference in number of groups CH2, CHOH and CO (lines C–2, 0, +2) may be chosen as the basis in ‘transitional’, ‘simmetrical’ and ‘oxi’-forms correspondingly.The most natural ‘transitional’ form better reflects isoelectronic compounds (placed diagonally).

Системы химии

 Система химии (Общей, неорганической и органической, ) Т.1

Период\группы: е-строение атома1:ns2 2 : ns2 3: ns2p IV: s2p2-sp3 V: ns2p3 VI ..ns2p4 7 ..ns2p5 8 ..ns2p6
1           n      1 H 1Водород *  Периодическая система химических элементов Д.И.Менделеева 2 He 4
2     (He) Металлы3Li7 4 Be9 Неметаллы: 5 B11 6 C12 Углерод 7 N14Азот 8 O16Кислород 9 F19 Галогены 10 Ne20
3     (Ne) 11Na23 12 Mg24 13 Al27 14Si28 Кремний 15 P31Фосфор 16 S32 17 Cl35.5 18 Ar40
4     (Ar) 19 K39 20 Ca40 3d:21Sc 22Ti48 23V51 24Cr52 25Mn55 Fe56Co Ni
  29Cu64 30Zn65 31 Ga70 32 Ge73 33 As75 34Se79 35 Br80 36 Kr84
5       (Kr) 37 Rb85 38 Sr 88 4d: 39Y 89 40Zr 91 41Nb 93 42Mo 96 43Tc 99 Ru Rh Pd
  47Ag108 48Cd 112 49 In 115 50 Sn 119 51 Sb122 52 Te128 53 I 127 54 Xe131
6       (Xe) 55 Cs133 56 Ba 137 4d-f: 57-71Ln 72Hf 178 73Ta 181 74W 184 75Re 186 Os Ir Pt
  79Au197 80Hg201 81 Tl204 82 Pb207 83 Bi 209 84Po209 85 At210 86 Rn222
7       (Rn) 87 Fr223 88 Ra 226 6d+f: :89Ac 90Th 232 91 Pa 231 92U 238 93Np 237 PuAmCm
Группы: 0 Характерные соединения : водородные -4:RH4  Me+RH3 -3: RH3NH4+A -2 H2R R-2 Вода  -1 НRMe+R R   ns2p60
степени (углерода) -3: R2H6 -2: N2H4 -1:H2O2 0:R Г2 +1:     s2p5
  окисления Система -3:R2H6 (RH3)n -2:RH3XC2H4 -1 RH2X 0:RnO2 +1: Г2О — НГО +2: ROs2p4
не-органических Алкины Диены -1: C2H2 0:RnN2,P4 +1:S2X2 +2   RO 3:R2O3s2p3
4 соединений 0:RH2X2H2CO +1:N2O H3PO2 +2 SX2 H2S2O3 +3:R2О3 -НГО2 +4: RO2s2p2
5 0: R +1:C2X2 +2: RO +3: +4: RО2 +5:     s2p1
6 0: Ro +2: RO H2СО2 3:HRO2H3RO3 +4: RO2H2SO3 +5:Г2О5 НГО3 +6: RO3s2
7 0: Ro Bases +3:R2X6 +4 RO2 +5:H2S2O6 +6:K2MnO4 +7:       s1
высшие 8кислородные Oxides +1: R2ROH Основания 2:RO R(OH)2 3:R2OR(OH)3 4:ROAcids H2RO3 5:R2O5H3RO4 +6:RO3H2RO4 +7:R2О7НRО4 +8: RO4R+8 s0

System of оrganic compounds (90о

0 RHn: R 1 2 RHnO 3 4 RHnO2 5 6 RHnO3 7 8 RHnO4
-1:   НГ 0:   Г2 1:Г2О НГО Г2О3 НГО2 Г2О5 НГО3 R2О7НГО4
-2: H2R-Вода -1: H2O2 0: O2,O3 S8 SO2 H2SO3 6:RO3H2SO4
-3:RH3:NH3 -2 NH2NH2 -1 NH2OH 0:R: N2,P4 N2O H3PO2 +2: NO HNO2H3PO3 +4 NO2 HNO3Н3PO4
-4: RH4: CH4неорганические соединения -3      765 -2: RH3X CH3OH CH3NH2 -1 0: RH2X2CH2O +1 +2: RHXHСООН CO,HCN +3 +4: CX4 CO2H2CO3CO(NH2)2
органические соединения 3СН34(C2H6) C2H4C2H5X
C2H5OH
C2HC2H4X2
CH3CHO
C2(HX)n(CH2O)2CH3COOH C2X2XCH2COOH
H2NCH2COOH
C2XCHOCOOH C2X(COOH)(СN)2
Cn: CnH2n+2 углеводороды: (CH2)n (CH)n (CH2O)n (CХ)n …(HCN)n CnOn+1
Классы: Алканы АлкеныПолимерыСпирты Алкины Диены  Бензол УглеводыКислоты гидрокси-амино- оксо-Кислоты Много-основные к.

Periodic system of Biology (Sednev, 2002) and the CONTENT — Theoretical test (multifunctional periodic table, tool for both students and serious researchers)

Общая биология 40% Ботаника 20% classification Зоология 20% Homo Человек 20%
Topics VII. Biosys-tematics (10 %) Авто- трофные (Plant) Photosynthesis. переход: гетеротрофные мало- подвижные (Animal) части
I. Cell Biology (25 %) Microbiology: Prokaryotic cell organization Morphology PRO- KARYOTA Anabaena Phototrophy chemotrophy Escherichia αβγε- VIRALES Bacteriophage Biotechnology: Fermentation Genetic manipulation of organisms 1. Structure and function of cells Chemical components Cell. metabolism Protein synthesis recombination,
Organelles Transport through membranes Mitosis and and meiosis EUKA- RYOTA CHLOROPHYTA Chlorella Chla- mydomonas Diatomea Navicula EUGLENOPHYTA Euglena «PROTOZOA» Trypanosoma Amoeba Plasmodium Vorticella Paramaecium V.Genetics and Evolution (15 %) Variation: mutation and modification Mendelianin heritance Multiple allelism, sex linkage
Structure and function of tissues and Много- клеточные Ulothrix Spirogyra RHODOPHYTA Chondrus PHAEOPHYT Ayceae Sargassum BRYOPHYTA: Hepaticopsida Marchantia Muscopsida Polytricum, Sphagnum LICHENES Parmelia, Cladonia ZYGOMYCOTA Mucor ASCOM.: Penicillium Sacharomyces BASIDIO: Agaricus PORIFERA: Euspongi CNIDARIA Hydrozoa Scyphozoa Aurelia Anthozoa Corallium PLATHE- LMINTHES Turbellaria Polycellis Trematoda Fasciola Cestoda Taenia NEMATHE-LMINTHES Ascaris, Trichinella Digestion and nutrition Respiration Excretion Growth and development Reproduction (ferns and mosses included)
II. Anatomy and Physiology (15 %) Сосу- дистые RHYNOPHYTA Rhynia LYCOPO- DIOPHYTA Lycopodium EQUI- SETOPHYTA Equisetum POLY- PODIOPHYTA Pteridium MOLLUSCA Gastropoda Helix Lamellibran- chiata Cephalopoda Sepia ANNELIDA Polychaeta Nereis Oligochaeta: Lumbricus Hirudinea ARTHROPODA Crustacea Tracheata Chilopoda Insecta *Chelicerata Araneus, Ixodes organs involved in Circulation Transport of water, minerals and assimilates transpiration and gas exchange Immunity.
III. Animal Physiology (15 %) seedplants seedplants: PINOPHYTA Cycas Ginkgo Pinus Liliopsida Liliaceae Lilium, Allium Orchidaceae Orchis PoaceaeZea, Triticum Arecaceae Cocos Araceae Monstera MAGNO- LIOPHYTA – psida-ceae Ranunculaceae. Rosaceae: R, Malus, Prunus Fabaceae Pisum Oleace Fagaceae Cactaceae Brassicacea Lamiaceae Solanacea Asteraceae ECHINO- DERMATA Stellaroidea Asterias Echinoidea Echinocardium CHORDATA: Urochordata Ascidia Cephalochordata Branchiostoma Vertebrata: Cyclostomata Petromyzon Chondroichthyes Scyliorhinus Pisces Chondrostei Acipenser Teleostei Clupea Amphibia Caudata Salamandra AnuraRana Reptilia Testudinat Crocodylia Squamata Aves * Mammalia Monotremata Carnivora Ursus Canis, Felis Regulation: Endocrine-system: pituitary gland, thyroid gland, islets Langerhans, adrenal medulla, adrenal cortex, ovaries and testes Nervous system: peripheral, central (spinal cord and brain), autonomic nervous system (sympathetic and parasympa-thetic), reflexes, sense organs (eyes and ears)
VI. Ecology (15%) Ecosystems Succession Mechanism of evolution Natural selection Mutation Reproductive isolation Adaptation Fitness Hardy- Weinberg principle Bio- geochemical cycles   Carbon cycle Nitrogen cycle Food. relationships Food web Food chain Trophic level Producers, consumers and decomposers Pyramid of biomass Energy flowPyramid of energy IV.Ethology (5%) Behavioural systems Causesof behaviour Conflict behaviour Learned behaviour Population structure and dynamics Age and sex structure of human population Biosphere and man Population growth Birth rate, death rate   Exponential growth Pollution

THE INTERNATIONAL  OLYMPIAD

The content in the theoretical tasks at IBO (rules), biological concepts applied to the majority of organisms of the same group.

NobelS :

Natural NP (20-21 c Humanity
Element.particles and theory 02-e-theory Lorents  v-2015 SM  Economic Sciences69 — Н Models…prospects —  89   71 Growth  73
Электро Магнетизм, кванты (1-Рентген-Дирак-   КК 2012 Радио- Астрофизика (Астро-2011 – СН-ТЕ Макро- 70-  Max  78 –ПР -управление Саймон
Ядра, н.элементы ФТТ: ФП, опт-электроника  право 74 МЮРДАЛЬ ХАЙЕК Equality, Knowledge  86    91 трансакц. КОУЗ  Inst 92Беккер  Ec.Life —  93 история  Time 98 СЕН Choice 02 эксп. КАНЕМАН Maps Bounded Rationality,  Construct-Eco 09
Химия ХХФизическая, строение вещества(-квази-2011) 6.2. Термодинамика, р., реакции Кинетика-Катализ Анализ МИР (1901-2011): -политики: (Рузвельт)-19  — Чемберлен-25-37, КИССИНДЖЕР-73-Эк.план Маршалл-
1953 кредит М.Юнус-2006
Не-Органическая    химия (СШ): Сочетания С-2010 борцы,ученые: БОРЛОУГ -70- CАХАРОВ -75
НП-2015 БиоХ.:обмен веществ и Е  гормоны-белки-рецепторы, репарации ДНК — 2015 организации: МКК-2012-ЕС, 2015 —н.диалог ислама, журналисты и лит:
Медицина и физиология ДНК Уотсон (Watson) Литература (№2-Моммзен  «Рим.история»  1953
Микробиология, инфекции — 2015 — лекарства от паразитов Онко- Иммунология Мировые: 7 Киплинг ..25 Шоу Маркес   Нац. 5. Сенкевич70 Солженицын —
Методы-терапия Развитие 2010-ЭКО 12 стволовые клетки Поэзия: 1-фр. 33 Бунин 58 Пастернак 87-Бродский +ист.  *Table2015- S.A. многоголосие

е-Кембридж: Нобелевские :  6д Творения  10-100-1000- лет

 

 History of chemistry and alchemy — Arabic word al-kīmīā (الکیمیاء)  from the Greek χημία or  name of Egypt in Egyptian.[8] (See also: Alchemy and Timeline of chemistry, Egyptians[17] Babylonians, Indians[18]

A basic chemical hypothesis first emerged in Classical Greece with the theory of four elements as propounded definitively by Aristotle stating that that fire, air, earth and water were the fundamental elements from which everything is formed as a combinationEmpedocles (450 BC) asserts that all things are composed of 4 elements by two opposing forces, love and hate, or affinity and antipathy, combining and separating them into infinitely varied forms.[4] Greek atomism dates back to 440 BC, Leucippus and Democritus propose the idea of the atom, an indivisible particle that all matter is made of. This idea is largely rejected by natural philosophers[5][6] but Roman philosopher Lucretius (30 — 50 BC) publishes De Rerum Natura(On The Nature of Things),[19][20] a poetic description of the ideas of atomism[9] (and Epicurus),  philosophical in nature[21]

Plato (360 BC) coins term ‘elements’ (stoicheia) and in his dialogue Timaeus,  composition of inorganic and organic bodies and is a rudimentary treatise on chemistry, assumes that the minute particle of each element had a special geometric shape: tetrahedron (fire), octahedron (air), icosahedron (water), cube (earth)[7] and aether (c. 350 BC Aristotle, expanding on Empedocles too, proposes idea of a substance as a combination of matter and form) as theory of the Five Elements,  accepted throughout the western world for over 1000 years.[8] c. 300 Zosimos of Panopolis writes books on alchemy, which he defines as the study of the composition of waters, movement, growth, embodying and disembodying, drawing the spirits from bodies and bonding the spirits within bodies.[10]

c. 770  Abu Musa Jabir ibn Hayyan (aka Geber), an Arab/Persian alchemist who is «considered by many to be the father of chemistry»,[11][12][13] develops an early experimental method, and isolates numerous acids, including hydrochloric acid, nitric acid, citric acid, acetic acid, tartaric acid, and aqua regia.[14]
c. 1000 Abū al-Rayhān al-Bīrūnī[15] and Avicenna,[16] both Persian chemists, refute the practice of alchemy and the theory of the transmutation of metalsGreek atomism and  Hellenistic alchemy of transmuting elements into gold and discovering the elixir of eternal life[22]  the Arab world after the Muslim conquests,[23]  into medieval andRenaissance Europe through Latin translations.[24] 

The Dutchman J. B. van Helmont discovered carbon dioxide,  what Scottish chemist Joseph Black  called ‘fixed air’ in 1754; chemists at OxfordRobert Boyle, The Sceptical Chymist and Boyle’s law, rejected the classical «four elements» and proposed a mechanistic alternative of atoms and chemical reactions. Henry Cavendish discovered  hydrogen and elucidated its properties and Joseph Priestley and, independently, Carl Wilhelm Scheele isolated pure oxygen.

Antoine-Laurent de Lavoisier is considered the «Father of Modern Chemistry».[27]

The theory of phlogiston (a substance at the root of all combustion) was propounded by the German Georg Ernst Stahl in the early 18th century and was only overturned by the end of the century by the French chemist Antoine Lavoisier, the chemical analogue of Newton in physics; who did more than any other to establish the new science on proper theoretical footing, by elucidating the principle of conservation of mass and developing a new system of chemical nomenclature used to this day.[28]

English scientist John Dalton proposed the modern theory of atoms; that all substances are composed of indivisible ‘atoms’ of matter and that different atoms have varying atomic weights.

The development of the electrochemical theory of chemical combinations occurred in the early 19th century as the result of the work of two scientists in particular, J. J. Berzeliusand Humphry Davy, made possible by the prior invention of the voltaic pile byAlessandro Volta. Davy discovered nine new elements including the alkali metals by extracting them from their oxides with electric current.[31]

British William Prout first proposed ordering all the elements by their atomic weight as all atoms had a weight that was an exact multiple of the atomic weight of hydrogen.

 In his periodic table, Dmitri Mendeleev predicted the existence of 7 new elements,[29] and placed all 60 elements known at the time in their correct places.[30]

J. A. R. Newlands devised an early table of elements, which was then developed into the modern periodic table of elements[32] in the 1860s by Dmitri Mendeleev and independently by several other scientists including Julius Lothar Meyer.[33][34] The inert gases, later called the noble gaseswere discovered by William Ramsay in collaboration with Lord Rayleigh at the end of the century, thereby filling in the basic structure of the table.

Organic chemistry was developed by Justus von Liebig and others, following Friedrich Wöhler‘s synthesis of urea which proved that living organisms were, in theory, reducible to chemistry.[35] Other crucial 19th century advances were; an understanding of valence bonding (Edward Frankland in 1852) and the application of thermodynamics to chemistry (J. W. Gibbs and Svante Arrhenius in the 1870s).